李宏毅机器学习课程最新更新2021
课程介绍:
本课程为李宏毅机器学习课程,更新最新2021年。包含视频和代码。
学习作业图:http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
课程目录:
2020年课程
├──code
| ├──hw1
| | ├──hw1_regression.ipynb 13.55kb
| | ├──hw1_regression.py 7.44kb
| | └──hw1_slides.pptx 1.14M
| ├──hw10
| | ├──hw10_anomaly_detection.ipynb 18.14kb
| | ├──hw10_anomaly_detection.py 10.30kb
| | └──hw10_slides.pptx 849.67kb
| ├──hw11
| | ├──hw11_GAN.ipynb 450.75kb
| | ├──hw11_gan.py 208.96kb
| | └──hw11_slides.pptx 4.93M
| ├──hw12
| | ├──hw12_domain_adaptation.ipynb 129.83kb
| | ├──hw12_domain_adaptation.py 14.79kb
| | └──hw12_slides.pptx 1.01M
| ├──hw13
| | ├──hw13_2.pptx 1.62M
| | ├──hw13_meta_omniglot.ipynb 198.49kb
| | ├──hw13_meta_omniglot.py 143.83kb
| | ├──hw13_meta_regression.ipynb 89.05kb
| | ├──hw13_meta_regression.py 11.71kb
| | └──hw13_slides.pptx 730.35kb
| ├──hw14
| | ├──hw14_life_long_learning.ipynb 49.75kb
| | ├──hw14_life_long_learning.py 31.05kb
| | └──hw14_slides.pptx 648.83kb
| ├──hw15
| | ├──hw15_reinforcement_learning.ipynb 111.64kb
| | ├──hw15_reinforcement_learning.py 10.50kb
| | └──hw15_slides.pptx 1.04M
| ├──hw2
| | ├──hw2_classification.ipynb 67.12kb
| | ├──hw2_classification.py 16.49kb
| | └──hw2_slides.pptx 483.96kb
| ├──hw3
| | ├──hw3_CNN.ipynb 15.64kb
| | ├──hw3_cnn.py 8.83kb
| | └──hw3_slides.pptx 750.81kb
| ├──hw4
| | ├──hw4_RNN.ipynb 60.12kb
| | ├──hw4_rnn.py 18.16kb
| | └──hw4_slides.pptx 2.48M
| ├──hw5
| | ├──hw5_colab.ipynb 1.03M
| | ├──hw5_colab.py 18.89kb
| | └──hw5_slide.pptx 11.24M
| ├──hw6
| | ├──hw6_adversarial_attack.ipynb 13.21kb
| | ├──hw6_adversarial_attack.py 7.27kb
| | └──hw6_slides.pptx 906.59kb
| ├──hw7
| | ├──hw7_Architecture_Design.ipynb 10.56kb
| | ├──hw7_architecture_design.py 7.38kb
| | ├──hw7_Knowledge_Distillation.ipynb 26.70kb
| | ├──hw7_knowledge_distillation.py 8.71kb
| | ├──hw7_Network_Pruning.ipynb 342.51kb
| | ├──hw7_network_pruning.py 11.01kb
| | ├──hw7_slides.pptx 1.73M
| | ├──hw7_Weight_Quantization.ipynb 9.80kb
| | └──hw7_weight_quantization.py 5.06kb
| ├──hw8
| | ├──hw8_seq2seq.ipynb 43.71kb
| | ├──hw8_seq2seq.py 25.19kb
| | └──hw8_slides.pptx 1.29M
| └──hw9
| | ├──hw9_slides.pptx 4.78M
| | ├──hw9_unsupervised.ipynb 205.01kb
| | └──hw9_unsupervised.py 11.44kb
├──datasets
| ├──hw1
| | └──data.zip 173.29kb
| ├──hw10
| | ├──test.npy 234.38M
| | └──train.npy 937.50M
| ├──hw11
| | └──crypko_data.zip 431.13M
| ├──hw12
| | └──real_or_drawing.zip 183.60M
| ├──hw13
| | └──Omniglot.tar.gz 34.38M
| ├──hw2
| | └──data.tar.gz 5.82M
| ├──hw3
| | └──food-11.zip 1.08G
| ├──hw4
| | └──data.zip 43.01M
| ├──hw5
| | ├──checkpoint.pth 162.13M
| | └──food-11同hw3.txt
| ├──hw6
| | └──data.zip 17.06M
| ├──hw7
| | ├──food-11同hw3.txt
| | └──student_custom_small.bin 1022.88kb
| ├──hw8
| | └──data.tar.gz 5.56M
| └──hw9
| | ├──trainX.npy 24.90M
| | ├──valX.npy 1.46M
| | └──valY.npy 4.03kb
├──slides
| ├──AC.pdf 798.13kb
| ├──Attack (v8).pdf 2.55M
| ├──Attain (v5).pdf 3.39M
| ├──Auto (v3).pdf 1.62M
| ├──auto.pdf 1.82M
| ├──Bias and Variance (v2).pdf 1.04M
| ├──BP.pdf 914.31kb
| ├──CGAN.pdf 934.44kb
| ├──Classification (v3).pdf 1.37M
| ├──CNN.pdf 3.46M
| ├──CycleGAN.pdf 2.03M
| ├──Detection (v9).pdf 2.21M
| ├──DL (v2).pdf 1.74M
| ├──DNN tip.pdf 2.38M
| ├──fGAN.pdf 516.87kb
| ├──GAN (v2).pdf 2.95M
| ├──GANEvaluation.pdf 559.20kb
| ├──GANfeature.pdf 978.68kb
| ├──GANSeqNew.pdf 2.04M
| ├──GANtheory (v2).pdf 706.17kb
| ├──GNN.pdf 30.62M
| ├──Gradient Descent (v2).pdf 1.53M
| ├──introduction.pdf 1.95M
| ├──IRL (v2).pdf 844.74kb
| ├──Lifelong Learning (v9).pdf 1.71M
| ├──Logistic Regression (v3).pdf 1.55M
| ├──Meta1 (v6).pdf 1.61M
| ├──Meta2 (v4).pdf 1.82M
| ├──PCA (v3).pdf 1.77M
| ├──PhotoEditing.pdf 1.19M
| ├──Pointer.pdf 738.98kb
| ├──PPO (v3).pdf 874.02kb
| ├──QLearning (v2).pdf 1.60M
| ├──Recursive.pdf 872.47kb
| ├──Regression.pdf 1.57M
| ├──Reward (v3).pdf 856.92kb
| ├──RL (v6).pdf 2.29M
| ├──RNN (v2).pdf 3.79M
| ├──rule.pdf 635.41kb
| ├──semi (v3).pdf 1.34M
| ├──Small (v6).pdf 1.78M
| ├──transfer (v3).pdf 2.44M
| ├──TSNE.pdf 1.09M
| ├──WGAN (v2).pdf 1.01M
| ├──Why.pdf 2.77M
| ├──word2vec (v2).pdf 1.39M
| └──XAI (v7).pdf 3.36M
├──video
| ├──course
| | ├──P10_DL預備_ML_Lecture_6_Brief_Introduction_of_Deep_Learning.flv 91.13M
| | ├──P11_ML_Lecture_7_Backpropagation.flv 64.09M
| | ├──P12_ML_Lecture_9-1_Tips_for_Training_DNN.flv 171.80M
| | ├──P13_ML_Lecture_9-2_Keras_Demo_2.flv 54.34M
| | ├──P14_ML_Lecture_9-3_Fizz_Buzz_in_Tensorflow_sequel.flv 12.64M
| | ├──P15_作業三_ML_Lecture_10_Convolutional_Neural_Network.flv 153.30M
| | ├──P16_作業四_ML_Lecture_21-1_Recurrent_Neural_Network_Part_I.flv 95.06M
| | ├──P17_ML_Lecture_21-2_Recurrent_Neural_Network_Part_II.flv 186.45M
| | ├──P18_作業五_Explainable_ML_1_8.flv 25.87M
| | ├──P19_Explainable_ML_2_8.flv 27.73M
| | ├──P1_Course_Introduction.flv 77.83M
| | ├──P20_Explainable_ML_3_8.flv 11.58M
| | ├──P21_Explainable_ML_4_8.flv 13.75M
| | ├──P22_Explainable_ML_5_8.flv 15.49M
| | ├──P23_Explainable_ML_6_8.flv 14.09M
| | ├──P24_Explainable_ML_7_8.flv 15.40M
| | ├──P25_Explainable_ML_8_8.flv 13.76M
| | ├──P26_作業六_Attack_ML_Models_1_8.flv 11.64M
| | ├──P27_Attack_ML_Models_2_8.flv 20.60M
| | ├──P28_Attack_ML_Models_3_8.flv 13.62M
| | ├──P29_Attack_ML_Models_4_8.flv 15.55M
| | ├──P2_Rule_of_ML_2020.flv 46.40M
| | ├──P30_Attack_ML_Models_5_8.flv 14.94M
| | ├──P31_Attack_ML_Models_6_8.flv 17.86M
| | ├──P32_Attack_ML_Models_7_8.flv 15.11M
| | ├──P33_Attack_ML_Models_8_8.flv 19.37M
| | ├──P34_作業七_Network_Compression_1_6.flv 14.20M
| | ├──P35_Network_Compression_2_6.flv 24.67M
| | ├──P36_Network_Compression_3_6.flv 14.17M
| | ├──P37_Network_Compression_4_6.flv 12.56M
| | ├──P38_Network_Compression_5_6.flv 17.87M
| | ├──P39_Network_Compression_6_6.flv 23.05M
| | ├──P3_作業一_ML_Lecture_1_Regression_Case_Study.flv 148.16M
| | ├──P40_作業八_Conditional_Generation_by_RNN___Attention.flv 202.61M
| | ├──P41_作業九_ML_Lecture_13_Unsupervised_Learning_Linear_Methods.flv 197.19M
| | ├──P42_ML_Lecture_15_Unsupervised_Learning_Neighbor_Embedding.flv 61.07M
| | ├──P43_ML_Lecture_16_Unsupervised_Learning_Auto-encoder.flv 81.53M
| | ├──P44_作業十_Anomaly_Detection_1_7.flv 25.12M
| | ├──P45_Anomaly_Detection_2_7.flv 28.18M
| | ├──P46_Anomaly_Detection_3_7.flv 27.08M
| | ├──P47_Anomaly_Detection_4_7.flv 7.73M
| | ├──P48_Anomaly_Detection_5_7.flv 24.71M
| | ├──P49_Anomaly_Detection_6_7.flv 25.46M
| | ├──P4_ML_Lecture_2_Where_does_the_error_come_from.flv 85.92M
| | ├──P50_Anomaly_Detection_7_7.flv 11.44M
| | ├──P51_作業十一_GAN_Lecture_1_2018_Introduction.flv 180.61M
| | ├──P52_GAN_Lecture_2_2018_Conditional_Generation.flv 57.04M
| | ├──P53_GAN_Lecture_3_2018_Unsupervised_Conditional_Generation.flv 76.79M
| | ├──P54_GAN_Lecture_4_2018_Basic_Theory.flv 168.58M
| | ├──P55_GAN_Lecture_5_2018_General_Framework.flv 47.51M
| | ├──P56_GAN_Lecture_6_2018_WGAN,_EBGAN.flv 86.20M
| | ├──P57_GAN_Lecture_7_2018_Info_GAN,_VAE-GAN,_BiGAN.flv 86.20M
| | ├──P58_GAN_Lecture_8_2018_Photo_Editing.flv 43.62M
| | ├──P59_GAN_Lecture_9_2018_Sequence_Generation.flv 159.57M
| | ├──P5_Gradient_Descent_ML_Lecture_3-1_Gradient_Descent.flv 118.33M
| | ├──P60_GAN_Lecture_10_2018_Evaluation_Concluding_Remarks.flv 58.19M
| | ├──P61_作業十二_ML_Lecture_12_Semi-supervised.flv 116.92M
| | ├──P62_ML_Lecture_19_Transfer_Learning.mp4 225.69M
| | ├──P63_作業十三Introduction_of_Meta_Learning.flv 24.58M
| | ├──P64_作業十四_Life_Long_Learning_1_7.flv 24.58M
| | ├──P65_Life_Long_Learning_2_7.flv 14.08M
| | ├──P66_Life_Long_Learning_3_7.flv 20.58M
| | ├──P67_Life_Long_Learning_4_7.flv 8.77M
| | ├──P68_Life_Long_Learning_5_7.flv 6.22M
| | ├──P69_Life_Long_Learning_6_7.flv 26.75M
| | ├──P6_ML_Lecture_3-2_Gradient_Descent_Demo_by_AOE.flv 9.39M
| | ├──P70_Life_Long_Learning_7_7.flv 19.80M
| | ├──P71_作業十五_ML_Lecture_23-1_Deep_Reinforcement_Learning.flv 131.58M
| | ├──P72_ML_Lecture_23-2_Policy_Gradient_Supplementary_Explanation.flv 25.39M
| | ├──P73_ML_Lecture_23-3_Reinforcement_Learning_including_Q-learning.flv 440.70M
| | ├──P74_DRL_Lecture_1_Policy_Gradient_Review.flv 82.27M
| | ├──P75_DRL_Lecture_2__Proximal_Policy_Optimization_PPO.flv 77.63M
| | ├──P76_DRL_Lecture_3_Q-learning_Basic_Idea.flv 88.14M
| | ├──P77_DRL_Lecture_4_Q-learning_Advanced_Tips.flv 70.52M
| | ├──P78_DRL_Lecture_5_Q-learning_Continuous_Action.flv 28.78M
| | ├──P79_DRL_Lecture_6_Actor-Critic.flv 60.69M
| | ├──P7_ML_Lecture_3-3_Gradient_Descent_Demo_by_Minecraft.flv 17.46M
| | ├──P80_DRL_Lecture_7_Sparse_Reward.flv 58.70M
| | ├──P81_DRL_Lecture_8_Imitation_Learning.flv 60.02M
| | ├──P8_作業二_ML_Lecture_4_Classification.flv 135.81M
| | └──P9_ML_Lecture_5_Logistic_Regression.flv 127.76M
| ├──extra
| | ├──graph_neual_network_1.flv 85.75M
| | └──graph_neural_ network_2.mp4 103.97M
| ├──homework
| | ├──HW10_Anomaly_Detection.flv 25.77M
| | ├──HW11_GAN.flv 23.21M
| | ├──HW12_Transfer_Learning.flv 13.20M
| | ├──HW13_Meta_Learning_1.flv 34.70M
| | ├──HW13_Meta_Learning_2.flv 15.68M
| | ├──HW13_Meta_Learning_3.flv 86.97M
| | ├──HW14_Life-long_Learning.flv 41.39M
| | ├──HW15_Reinforcement_Learning.flv 15.50M
| | ├──HW1_Regression.flv 11.75M
| | ├──HW2_Classification.flv 27.30M
| | ├──HW3_CNN.flv 31.57M
| | ├──HW4_RNN.flv 25.56M
| | ├──HW5_Explainable.flv 60.88M
| | ├──HW6_Adversarial_Attack.flv 18.08M
| | ├──HW7_Network_Compression.flv 28.55M
| | ├──HW8_Seq2seq.flv 34.68M
| | └──HW9_Unsupervised_Learning.flv 17.20M
| └──names.txt 3.10kb
├──courses_ML20.html 19.71kb
├──HW.png 141.89kb
└──main_ihwang.css 2.16kb
李宏毅2021春机器学习课程/
├──01_2021_机器学习相关规定.mp4 53.29M
├──02_第一节__上____机器学习基本概念简介.mp4 78.49M
├──03__下____深度学习基本概念简介.mp4 84.86M
├──04_Google_Colab教学.mp4 19.48M
├──05_Pytorch_教学_part_1.mp4 42.60M
├──06_Pytorch_教学_part_2_英文有字幕_.mp4 18.57M
├──07_作业说明_HW1_slides.mp4 36.71M
├──08__选修_To_Learn_More___深度学习简介.mp4 77.79M
├──09__选修_To_Learn_More___反向传播_Backpropagation_.mp4 43.62M
├──100__选修_To_Learn_More___Meta_Learning___Metric_based__2_.mp4 4.57M
├──101__选修_To_Learn_More___Meta_Learning___Metric_based__3_.mp4 11.48M
├──102__选修_To_Learn_More___Meta_Learning___Train_Test_as_RNN.mp4 7.63M
├──10_第二节_机器学习任务攻略.mp4 79.99M
├──11_类神经网络训练不起来怎么办_一__局部最小值__local_minima__与鞍点__saddle_point_.mp4 59.09M
├──12_类神经网络训练不起来怎么办_二__批次__batch__与动量__momentum_.mp4 54.53M
├──13_类神经网络训练不起来怎么办_三__自动调整学习率__Learning_Rate_.mp4 60.20M
├──14_类神经网络训练不起来怎么办_四__损失函数__Loss__也可能有影响.mp4 28.81M
├──15_类神经网络训练不起来怎么办__五__批次标准化__Batch_Normalization_.mp4 45.64M
├──16__选修_To_Learn_More___Optimization_for_Deep_Learning__1_2_.mp4 91.83M
├──17__选修_To_Learn_More___Optimization_for_Deep_Learning__2_2_.mp4 94.68M
├──18__选修_To_Learn_More____Classification.mp4 114.47M
├──19__选修_To_Learn_More___Logistic_Regression.mp4 110.19M
├──20_作业说明_HW2中文低画质版.mp4 64.63M
├──21_作业说明_HW2_英文有字幕高清版.mp4 58.98M
├──22_第三节_卷积神经网络_CNN_.mp4 91.24M
├──23_自注意力机制_Self_attention__上_.mp4 42.00M
├──24_自注意力机制__Self_attention___下_.mp4 71.41M
├──25__选修_To_Learn_More___Unsupervised_Learning___Word_Embedding.mp4 67.75M
├──26__选修_To_Learn_More___Spatial_Transformer_Layer.mp4 53.57M
├──27__选修_To_Learn_More___Recurrent_Neural_Network.mp4 68.69M
├──28__选修_To_Learn_More___Graph_Neural_Network_1_2_.mp4 76.77M
├──29__选修_To_Learn_More___Graph_Neural_Network_2_2_.mp4 137.64M
├──30_作业说明_HW3_中文低画质.mp4 57.16M
├──31_作业说明_HW3_英文高画质有字幕.mp4 61.91M
├──32_作业说明_HW4_中文低画质版.mp4 55.11M
├──33_作业说明_HW4_英文无字幕高清版.mp4 49.18M
├──34_第五节_Transformer__上_.mp4 53.07M
├──35_Transformer__下_.mp4 105.63M
├──36__选修_To_Learn_More___Non_Autoregressive_Sequence_Generation.mp4 117.95M
├──37_作业说明_HW5_中文___Judgeboi讲解.mp4 109.24M
├──38_作业说明_HW5_slides_tutorial__英文版机翻.mp4 30.43M
├──39_作业说明_HW5_code_tutorial__英文版机翻.mp4 53.51M
├──40_第六节_生成式对抗网络_GAN___一____基本概念介紹.mp4 66.54M
├──41_生成式对抗网络_GAN___二____理论介绍与WGAN.mp4 74.76M
├──42_生成式对抗网络_GAN___三____生成器效能评估与条件式生成.mp4 83.72M
├──43_生成式对抗网络_GAN___四____Cycle_GAN.mp4 42.75M
├──44__选修_To_Learn_More___Unsupervised_Learning___Deep_Generative_Model__Part_I_.mp4 45.33M
├──45__选修_To_Learn_More___Unsupervised_Learning___Deep_Generative_Model__Part_II_.mp4 100.67M
├──46__选修_To_Learn_More___Flow_based__Generative_Model.mp4 58.96M
├──47_作业说明_HW6_中文版低画质.mp4 42.51M
├──48_作业说明_HW6_英文版高画质有字幕.mp4 28.97M
├──49_第七节_自监督式学习___一____芝麻街与进击的巨人.mp4 14.37M
├──50_自监督式学习__二____BERT简介.mp4 77.34M
├──51_自监督式学习__三_____BERT的奇闻轶事.mp4 37.53M
├──52_自监督式学习__四____GPT的野望.mp4 30.47M
├──53_自编码器__Auto_encoder___上____基本概念.mp4 33.72M
├──54_自编码器__Auto_encoder___下____领结变声器与更多应用.mp4 50.45M
├──55__选修_To_Learn_More___BERT_and_its_family___Introduction_and_Fine_tune.mp4 82.02M
├──56__选修_To_Learn_More___ELMo__BERT__GPT__XLNet__MASS__BART__UniLM__ELECTRA__others.mp4 108.36M
├──57__选修_To_Learn_More___Multilingual_BERT.mp4 61.80M
├──58__选修_To_Learn_More___來自獵人暗黑大陸的模型_GPT_3.mp4 60.60M
├──59__选修_To_Learn_More___Unsupervised_Learning___Linear_Methods.mp4 142.14M
├──60__选修_To_Learn_More___Unsupervised_Learning___Neighbor_Embedding.mp4 47.41M
├──61_作业说明_HW7_中文版低画质.mp4 42.21M
├──62_作业说明_HW8_中文版低画质.mp4 49.78M
├──63_第八节_来自人类的恶意攻击__Adversarial_Attack___上____基本概念.mp4 49.22M
├──64_来自人类的恶意攻击__Adversarial_Attack___下____类神经网络能否躲过人类深不见底的恶意.mp4 83.43M
├──65_机器学习的可解释性__Explainable_ML___上____为什么神经网络可以正确分辨宝可梦和数码宝贝.mp4 86.59M
├──66_机器学习的可解释性__Explainable_ML____下___机器心中的猫长什么样子.mp4 41.30M
├──67__选修_To_Learn_More___More_about_Adversarial_Attack__1_2_.mp4 29.50M
├──68__选修_To_Learn_More___More_about_Adversarial_Attack__2_2_.mp4 58.85M
├──69_作业说明_HW9_中文版低画质.mp4 96.14M
├──70_作业说明_HW10_中文版低画质.mp4 99.31M
├──71_第九节_概述领域自适应__Domain_Adaptation_.mp4 56.69M
├──72_作业说明_HW11_Domain_Adaptation_作業講解.mp4 116.91M
├──73_第十节_概述增強式學習_一____增强式学习和机器学习一样都是三个步骤.mp4 66.47M
├──74_概述增强式学习__二____Policy_Gradient_与修课心情.mp4 63.43M
├──75_概述增强式学习__三____Actor_Critic.mp4 49.31M
├──76_概述增强式学习__四____回馈非常罕見的時候怎么办_机器的望梅止渴.mp4 26.60M
├──77_概述增强式学习__五____如何从示范中学习_逆向增強式学习__Inverse_RL_.mp4 46.20M
├──78__选修_To_Learn_More___Deep_Reinforcement_Learning.mp4 105.22M
├──79__选修_To_Learn_More___Proximal_Policy_Optimization__PPO_.mp4 38.86M
├──80__选修_To_Learn_More___Q_learning__Basic_Idea_.mp4 44.90M
├──81__选修_To_Learn_More___Q_learning__Advanced_Tips_.mp4 37.02M
├──82__选修_To_Learn_More___Q_learning__Continuous_Action_.mp4 12.34M
├──83_第十二节_机器終身学习___一____为什么今日的人工智能无法成为天网_灾难性遗忘_Catastrophic_Forgetting_.mp4 50.24M
├──84_机器終身学习___二____灾难性遗忘_Catastrophic_Forgetting_.mp4 56.82M
├──85_神经网络压缩__一____类神经网络剪枝_Pruning__与大乐透假说_Lottery_Ticket_Hypothesis_.mp4 50.77M
├──86_神经网络压缩__二____从各种不同的面向來压缩神经网络.mp4 84.62M
├──87__选修_To_Learn_More___Geometry_of_Loss_Surfaces__Conjecture_.mp4 23.61M
├──88_第十三节_元学习_Meta_Learning__一____元学习和机器学习一样也是三個步骤.mp4 73.48M
├──89_元学习_Meta_Learning__二____万物皆可_Meta.mp4 56.98M
├──90__选修_To_Learn_More___Meta_Learning___MAML__1_.mp4 6.46M
├──91__选修_To_Learn_More___Meta_Learning___MAML__2_.mp4 6.39M
├──92__选修_To_Learn_More___Meta_Learning___MAML__3_.mp4 12.36M
├──93__选修_To_Learn_More___Meta_Learning___MAML__4_.mp4 5.89M
├──94__选修_To_Learn_More___Meta_Learning___MAML__5_.mp4 12.83M
├──95__选修_To_Learn_More___Meta_Learning___MAML__6_.mp4 6.41M
├──96__选修_To_Learn_More___Meta_Learning___MAML__7_.mp4 7.12M
├──97__选修_To_Learn_More___Meta_Learning___MAML__8_.mp4 4.05M
├──98__选修_To_Learn_More___Meta_Learning___MAML__9_.mp4 5.54M
├──99__选修_To_Learn_More___Meta_Learning___Metric_based__1_.mp4 9.04M
└──Lhy_Machine_Learning-main.zip 306.87M
顶级资源站 » 李宏毅机器学习课程最新更新2021
常见问题FAQ
- 资源站点会一直更新吗
- 是的,我们会持续更新!
- 可以帮我找资源吗
- 本站免费帮会员找资源,有需要请联系客服